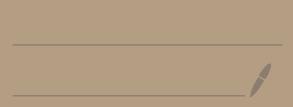
Topic 13 -Euler Method



$$y' = f(x,y)$$

 $y(x_{o}) = y_{o}$

The idea goes like this: Suppose you
know that a function y satisfies

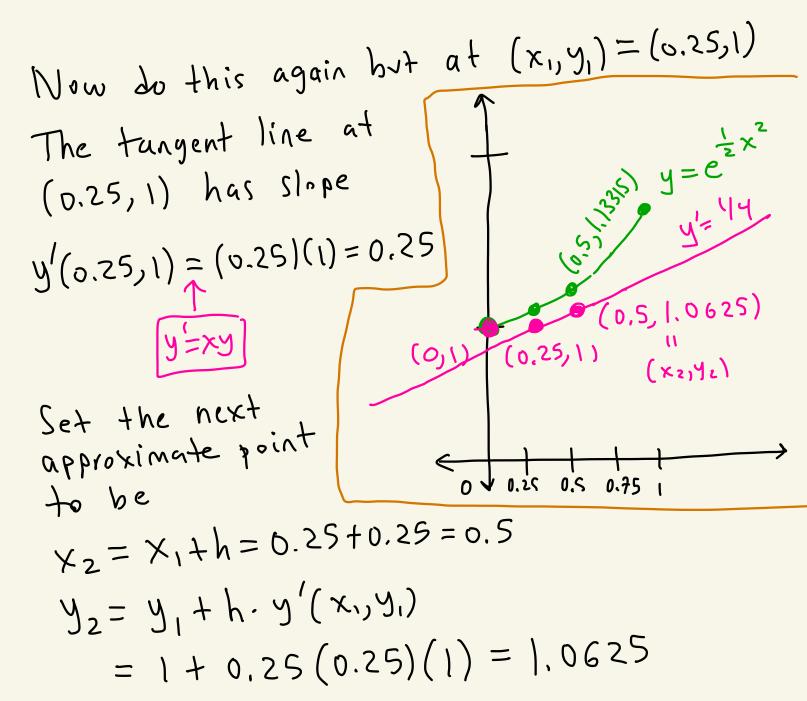
$$y(a)=b$$
 and $y'(a)=m$.
Then suppose you want to approximate
 $y(ath)$ where $h>0$ is a small
number.
If you
go h distance
along the
x-axis
and follow
the tangent
line then
the y-value
Will be
 $y=b+hM$.
You just iterate this over
and over to get your approximation.

Let's use this idea in an example.
Consider the initial-value problem

$$\begin{array}{c}y' = xy\\y(0) = 1\end{array}$$
From earlier
methods we know
the solution is
 $y = e^{\frac{1}{2}x^2}$
 $y = e^{\frac{1}{2}x^2}$
Let's pretend that
We don't know this.
Let's try to approximate the solution
when $0 \le x \le 1$.
First let's divide up $0 \le x \le 1$ into
smaller segments.
Let h= 0.25 = $\frac{1-0}{4}$.
 $e^{1}x^{2} = \frac{1-0}{4}$.
 $e^{1}x^{2} = \frac{1-0}{4}$.

break
$$0 \le x \le 1$$
 into 4 equally sized
Segments We will approximate the
solution to $y' = xy$, $y(b) = 1$ at these
four points.
The formula $y' = xy$ tells us the slope
of the tangent line of the solution
at any point. We can use this to
at any point. We can use this to
approximate the solution $y = e^{2x^2}$ without
knowing the solution.
Use the initial-value $y(b] = 1$
to get the first point in our approximation.
Let $x_0 = 0$, $y_0 = 1$.
The tangent line
has slope
 $y' = x_0 y_0 = 0$
at this point.
Move $h = 0.25$
along the tangent
line to get the
 $next approximate$
 $y' = x_0 y_0 = 0$
 $y' = y_0 y_0 = 0$
 $y' = y_0$

$$p_{eint} (x_{1}, y_{1}). \text{ This is:} \\ x_{1} = x_{0} + h = 0 + 0.25 = 0.25 \\ y_{1} = y_{0} + h \cdot y'(x_{0}, y_{0}) \\ x_{0} y_{0} \\ = 1 + 0.25(v)(1) \\ = 1$$



Keep going...

$$X_{3} = X_{2} + h = 0.5 + 0.25 = 0.75$$

 $Y_{3} = Y_{2} + h Y'(x_{2},y_{2})$
 $= 1.0625 \quad y' = 0.53(25)$
 $+ 0.25(0.5)(1.0625)$
 $= 1.19531$
 $(0,5)(1.0625)$
 $= 1.19531$
 $(0,5)(1.0625)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,25,1)$
 $(0,2$

Svi	nmary) 	$\int \frac{1}{2} \chi^2$	
n	Xn	y _n	uctual solution $y=e^{\frac{1}{2}x^2}$ evaluated at xn	
0	0			
	0.25		1,03174	
2	0,5	1,0625	1,13315	
3	0,75	1,19531	1,32478	
4	1	1,41943	1.64872	

Eulers method
Suppose we want to approximate
a solution to

$$y' = f(x, y)$$

 $y(x_0) = y_0$
Pick Some h>0.
We are given x₀y₀ above.
Set
 $x_n = x_{n-1} + h$
 $y_n = y_{n-1} + h \cdot f(x_{n-1}, y_{n-1})$
for $n \ge 1$

Ex: Approximate a solution to

$$y' = xy$$

$$y(0) = 1$$
On the interval $0 \le x \le 0.5$ using $h = 0.1$
The Euler equations here are

$$x_n = x_{n-1} + h$$

$$y_n = h \cdot f(x_{n-1}, y_{n-1})$$

$$x_n = x_{n-1} + 0.1$$

$$y_n = (0,1) \times x_{n-1} y_{n-1}$$

$$x_0 = 0$$

$$y_0 = 1$$
For $n = 1$:

$$x_1 = x_0 + h \cdot x_0 \cdot y_0$$

$$= 1 + (0,1)(0)(1)$$

$$= 1$$

$$\begin{aligned} x_{2} &= x_{1} + h = 0.(+0.) = 0.2 \\ y_{2} &= y_{1} + h \cdot x_{1} \cdot y_{1} \\ &= (+(0.1)(0.1)(0.1)(1) \\ &= 1.01 \end{aligned}$$

$$X_{3} = X_{2} + h = 0.2 + 0.1 = 0.3$$

$$Y_{3} = Y_{2} + h \cdot X_{2} \cdot Y_{2}$$

$$= 1.01 + (0.1)(0.2)(1.01)$$

$$= 1.030Z$$

$$X_{3} = 0.3$$

$$Y_{3} = 1.030Z$$

$$X_{y} = X_{3} + h = 0.4$$

$$Y_{u} = Y_{3} + h \times_{3} Y_{3}$$

$$= 1.0302 + (0.1)(0.3)(1.0302)$$

$$= 1.061106$$

$$\begin{aligned} x_{5} &= x_{4} + h = 0.5 \\ y_{5} &= y_{4} + h x_{4} y_{4} \\ &= 1.061106 + (0.1)(0.4)(1.061106) \\ &= 1.10355024 \end{aligned}$$

Ţ	Xn	Чл	actual value of solution $e^{y_2 \times^2}$ at $\times n$	approximation we initially did with h=0.25	
	0	1	- (
	D.	l	1,00501		
	0.2	1.01	1.0202		h=0.25
	0,3	(,0302	1.04603		
	0,4).061\06	1.08329		
	0,5	1.10355024	1,13315	1.0625	